62库

您现在的位置是:首页 > 前端开发 > Html/Css > 正文

Html/Css

ZOJ.3551.Bloodsucker(期望DP)

Admin2023-11-11Html/Css49

题目链接

\(Description\)

有1个吸血鬼和n-1个人,每天有且只会有两个人/吸血鬼相遇,如果是人与吸血鬼相遇,那个人会有p的概率变成吸血鬼;否则什么也不发生。求n个都变成吸血鬼的期望天数。

\(Solution\)

我还是写一下吧。。期望题一般倒着递推。

设\(f[i]\)为当前有\(i\)个吸血鬼,要变成\(n\)个吸血鬼的期望天数。那么\(f[n]=0\),答案即\(f[1]\).

一天要么变一个要么不变,很好想到:

\[f[i]=p_i(f_{i+1}+1)+(1-p_i)(f_i+1)
\]

\[p_i*f[i]=p_i*f[i+1]+1
\]

\[f[i]=\frac{1}{p_i}+f[i+1]
\]

而$$p_i=\frac{C(i,1)C(n-i,1)}{C(n,2)}p$$

那么$$f[i]=\frac{n(n-1)}{2i(n-i)p}+f[i+1]$$

#include <cstdio>int main()
{
int T; scanf("%d",&T);
long long n; double p,res;
while(T--)
{
scanf("%lld%lf",&n,&p), res=0;
for(int i=n-1; i>=1; --i)
res += 1.0*(n*(n-1))/(2.0*i*(n-i)*p);
printf("%.3lf\n",res);
}
return 0;
}

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~